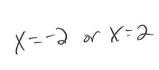
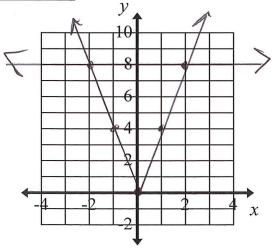

8.2A Solutions of Absolute Value Equations and Inequalities

#1-4: Solve the following equations graphically and algebraically.

1. |x| = 3

Graphical Solution


Algebraic Solution

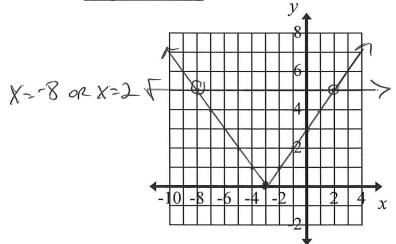

$$|\chi| = 3$$

$$|\chi = -3 \text{ or } \chi = 3$$

2. |4x| = 8

Graphical Solution

Algebraic Solution


$$|4x|=8$$

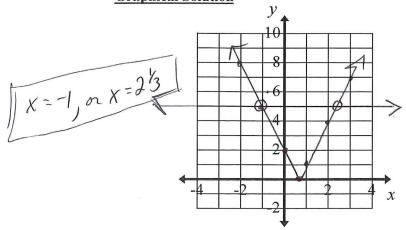
$$4x=-8 \text{ or } 4x=8$$

$$(x=-\lambda \text{ or } x=\lambda)$$

3. |x+3|=5

Graphical Solution

Algebraic Solution


$$|x+3|=5$$

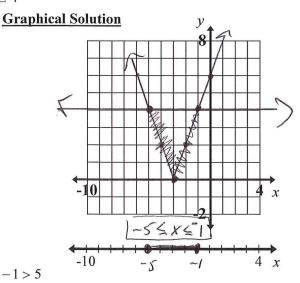
 $|x+3|=5$ or $|x+3|=5$
 $|x=-8|$ or $|x=-3|$

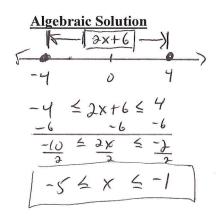
8.2A Solutions of Absolute Value Equations and Inequalities

#1-4 (continued): Solve the following equations graphically and algebraically.

4.
$$|3x-2|=5$$

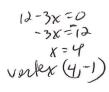
Graphical Solution

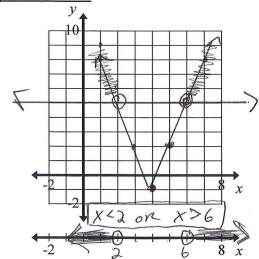


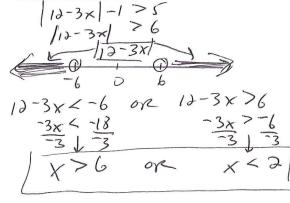

Algebraic Solution

$$3x-2=-5$$
 or $3x-2=5$
 $3x=-3$ $3x=7$
 $x=-1$ or $x=\frac{7}{3}$

#5-9: Solve the following absolute value <u>inequalities</u> graphically and algebraically.

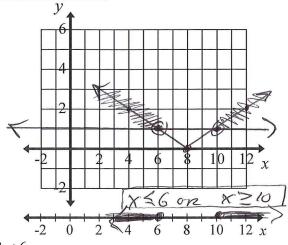

5.
$$|2x+6| \le 4$$



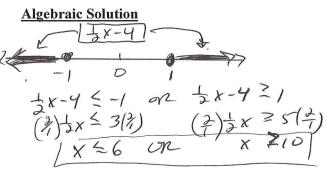

6. |12-3x|-1>5

Graphical Solution

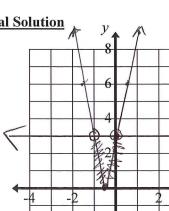
Algebraic Solution

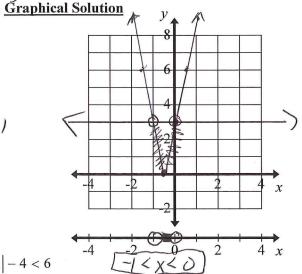

Solutions of Absolute Value Equations and Inequalities 8.2A

#5-9 (continued): Solve the following absolute value <u>inequalities</u> graphically and algebraically.

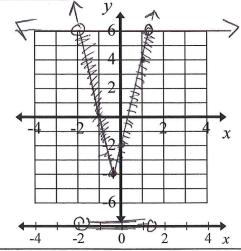

$$7. \quad \left| \frac{1}{2} x - 4 \right| \ge 1$$

 $\frac{1}{3}x-4=0$ (2) $\frac{1}{3}x=4(2)$ x=8Vertex (8,0)


Graphical Solution


Algebraic Solution

vertex (-1/2,0)



2|3x+1|-4<6

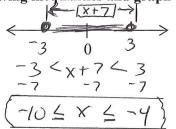
Graphical Solution

3x=-1 x=-1/3 vertex (-1/3,-4) y=2/3x+11-4

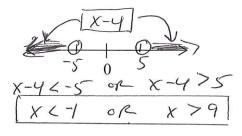
Algebraic Solution

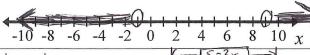
$$|6x+3|+3 < 6$$
 $|6x+3| < 3$
 $|$

Algebraic Solution

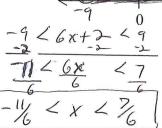

Algebraic Solution

$$2/3x+1/-4 < 6$$
 $+9/3x+1/ < 10$
 $1/3x+1/ < 5$
 $-5/3x+1/ < 5$
 $-5/3x+1/ < 5$
 $-1/5/3x+1/ < 5$
 $-1/5/3x+1/$

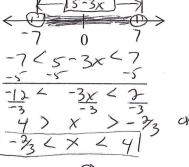

8.2A Solutions of Absolute Value Equations and Inequalities

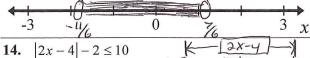

#10 - 17: Solve the following inequalities and graph them on a number line.

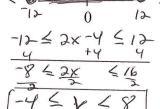
10.
$$|x+7| \le 3$$



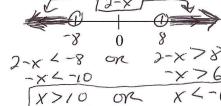
11.
$$|x-4| > 5$$

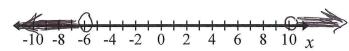



12.
$$|6x+2| < 9$$



13.
$$|5-3x|<7$$

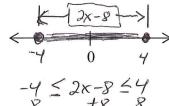



512

15.
$$|2-x|-3>5$$

16.
$$-\left|\frac{1}{4}x+4\right|-2<2$$
 $+2$
 $-\left|\frac{1}{4}x+4\right|$
 $-\left|\frac{1}{4}x+4\right|$
 $-\left|\frac{1}{4}x+4\right|$

17.
$$-2|2x-8|+2 \ge -6$$

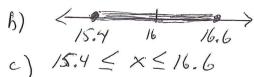

$$-2 -2$$

$$|-2/3x-8| \ge -8$$

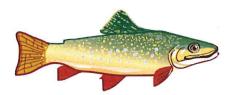
$$|-2/3x-8| \le 4$$

$$|-2/3x-8| \le 4$$

$$|-2/3x-8| \le 4$$



8.2A Solutions of Absolute Value Equations and Inequalities


#18 - 20: For each of the following situations:

- a) List several values that would satisfy the situation.
- b) <u>Graph</u> on a number line all the values that would satisfy the situation.
- c) Write a compound inequality that identifies all values that satisfy the situation.
- d) Write an <u>absolute value inequality</u> that represents all values that satisfy the situation.
- 18. A manufacturer allows 0.6 ounces more or less than the advertised amount of 16 ounces in each bottle of salad dressing. Write and solve an absolute value inequality that describes the acceptable volumes for a "16 ounce" bottle.

19. Most fish can adjust to a change in the water temperature of up to 15°F if the change is not sudden. Suppose a lake trout is living comfortably in water that is 58°F. Write an absolute value inequality that represents the range of temperatures at which the lake trout <u>CANNOT</u> survive.

- a) 40°, 42°, 75°, 80°
- b) 43 58 73
- c) x443 or x > 73
- d) /x-58/>15
- 20. A city ordinance states that pools must be enclosed by a fence that is from 3 to 6 ft high. Write an absolute value inequality describing fences that meet this ordinance.

- a) 3,4,45,6'
- $b) \leftarrow 3$
- d) 1x-4.5/ ≤ 1.5

Section 8.2A

Name	Period

8.2A Solutions of Absolute Value Equations and Inequalities

This page intentionally left blank